On Divergent Lacunary Trigonometric Series
نویسندگان
چکیده
منابع مشابه
On Lacunary Trigonometric Series.
1. Fundamental theorem. In a recent paper f I have proved the theorem that if a lacunary trigonometric series CO (1) X(a* cos nk6 + bk sin nk9) (nk+x/nk > q > 1, 0 ^ 0 ^ 2ir) 4-1 has its partial sums uniformly bounded on a set of 0 of positive measure, then the series (2) ¿(a*2 + bk2) k-l converges. The proof was based on the following lemma (which was not stated explicitly but is contained in ...
متن کاملLacunary Trigonometric Series. Ii
where E c [0, 1] is any given set o f positive measure and {ak} any given sequence of real numbers. This theorem was first proved by R. Salem and A. Zygmund in case of a -0, where {flk} satisfies the so-called Hadamard's gap condition (cf. [4], (5.5), pp. 264-268). In that case they also remarked that under the hypothesis (1.2) the condition (1.3) is necessary for the validity of (1.5) (cf. [4]...
متن کاملNo. 7] 5d~ 10. on Lacunary Trigonometric Series
x (1.2) lim I {t; t e E, SN(t) < xAN} / I E _ (2~r)-1/2 exp( u2/2)du. *' Recently, it is proved that the lacunarity condition (1.1) can be relaxed in some cases (c.f. [1] and [4]). But in [1] it is pointed out that to every constant c>0, there exists a sequence {nk} for which nk+l > nk(1 + ck--1(2) but (1.2) is not true for ak =1 and E_ [0, 11. The purpose of the present note is to prove the fo...
متن کاملSome Divergent Trigonometric Integrals
1. Introduction. Browsing through an integral table on a dull Sunday afternoon some time ago, I came across four divergent trigonometric inte-grals. (See (1) and (2) below.) I was intrigued as to how these divergent integrals ended up in a respectable table. Tracing their history, it turned out they were originally " evaluated " when some convergent integrals, (5) and (6), were differentiated u...
متن کاملA Lower Bound in the Tail Law of the Iterated Logarithm for Lacunary Trigonometric Series
The law of the iterated logarithm (LIL) first arose in the work of Khintchine [5] who sought to obtain the exact rate of convergence in Borel’s theorem on normal numbers. This result was generalized by Kolmogorov [6] to sums of independent random variables. Recall that an increasing sequence of positive numbers {nk} is said to satisfy the Hadamard gap condition if there exists a q > 1 such that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.2307/2044480